
Submitting BrainML Models

1. Introduction

This page describes how to go about submitting a model to the BrainML repository as a series of
steps. In general, a representative of a research community will submit a model for the data the
community wishes to store in a repository. This model can reuse components of other models
where characteristics of the data are shared in common, and define new components where
needed to express distinct types of information.

A model consists of an XML Schema, defining XML tags and their data types, and referencing
other schemas using standard mechanisms as well as those described in the specification. It is
recommended that you read the materials elsewhere on this web site, browse the models
currently available, and explore the tools hosted at neurodatabase.org (which are driven by a data
model in a precursor format to BrainML; see extensions).

In particular, in addition to a knowledge of XML Schemas, users should read the following
documents prior to creating a new model:

• Overview of BrainML
• BrainML Specification
• BrainML and BrainMetaL Components

Note that BrainML.org supports the use of XML Schema Compact Syntax (XSCS), a simpler
format for editing XML schema. Models can be submitted (and browsed) in either compact or
regular syntax. Use of compact syntax is recommended if you are editing schemas by hand.

2. Sign up for an Account

To submit a model, you must have a registered account at BrainML.org. This is to prevent
abuse of the repository; the only registration requirement is that the user must be a neuroscientist
with an institutional affiliation.

To sign up for an account:

1. Select Model Schemas at the upper left on this site.
2. Complete the fields on the lower left with your desired user ID and password.
3. Click the button for 'Sign Up'. This will direct you to a registration form.
4. Fill in and submit the form by pressing the 'Submit' button. An email will be sent to the

Page 1

http://neurodatabase.org
http://www.w3.org/XML/Schema
goto.do?page=.purpose
goto.do?page=.xscs

administrator of this site who will review your information. Approval generally requires 48
hours. If you have not heard from the administrator withing 48 hours, please email the
Laboratory of Neuroinformatics at the following email address: neurodatabase AT
med.cornell.edu

3. Copy an Existing Model

The easiest way to start building a model is to start with an existing schema in compact format
and modify it to suit your needs. This helps jump start the process and assists with getting
syntactic details right. A good schema to start with is this one, from the Cortical
Neurophysiology model.

In the following, we will use this particular model as an example to illustrate points about
building models in general.

4. Declare Model Namespace

The primary identifying component of any model is its namespace. This is a string unique to the
model constructed according to certain conventions. The string is declared in the initial schema
definition block as shown here for the cortical neurophysiology model (compact syntax):

targetNamespace "urn:bml/brainml.org:med.cornell.edu/Cortex/1"
namespace "urn:bml/brainml.org:med.cornell.edu/Cortex/1"
namespace bml "urn:bml/brainml.org:internal/BrainML/1"
namespace bmtl "urn:bml/brainml.org:internal/BrainMetaL/1"
namespace xlink "http://www.w3.org/1999/xlink"

Here,

• targetNamespace and the first namespace entry describe the namespace for the
model. The last three namespace references indicate models that this model depends on
(incorporates parts of in its own definitions).

• urn:bml/brainml.org: is a fixed part that is common to all BrainML namespaces. It
indicates that this is a BrainML model hosted at brainml.org.

• med.cornell.edu represents the domain name of the organization publishing the model.
This should be replaced in your own model by your institution domain name (as specified in
your account information).

• Cortex represents the name of the model itself. You should replace this with a short name,
not containing spaces, that describes the model and is unique within your institution.

• 1 is the version number of the model. Version numbers start at 1, and are incremented
whenever an augmented or modified version of the model is submitted. Earlier versions
remain available in the repository and can be referenced by their version number to support
data using them.

Submitting BrainML Models

Page 2
Copyright 2004, Cornell University. All rights reserved.

http://cortex.med.cornell.edu/

http://neocortex.med.cornell.edu/
schemas/med.cornell.edu/Cortex/1/cortex.xsc
isr.do?ns=urn:bml/brainml.org:med.cornell.edu/Cortex/1&action=viewFiles
isr.do?ns=urn:bml/brainml.org:med.cornell.edu/Cortex/1&action=viewFiles
http://cortex.med.cornell.edu/
http://cortex.med.cornell.edu/

The same schema header above in full XML syntax is:

<xs:schema elementFormDefault="qualified"
targetNamespace="urn:bml/brainml.org:med.cornell.edu/Cortex/1"

xmlns="urn:bml/brainml.org:med.cornell.edu/Cortex/1"
xmlns:bml="urn:bml/brainml.org:internal/BrainML/1"
xmlns:bmtl="urn:bml/brainml.org:internal/BrainMetaL/1"
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

Notice that here the full syntax requires a couple of extra elements: the 'elementFormDefault'
attribute, and the last namespace for XML Schema itself. These are fixed components required
by the full syntax and can be ignored.

5. Import Referenced Models

In order to reuse components from other models given as namespaces above, they must be
imported. This is done with lines of the following form (see original schema for full text).

import "http://brainml.org/schemas/internal/BrainML/1/brainml.xsd"
namespace "urn:bml/brainml.org:internal/BrainML/1"

In full XML syntax, this is:

<xs:import namespace="urn:bml/brainml.org:internal/BrainML/1"
schemaLocation="http://brainml.org/schemas/internal/

BrainML/1/brainml.xsd"/>

6. Define Components

Components are defined using the standard mechanisms of XML schema: simpleTypes,
complexTypes, attributes, and elements. By convention in BrainML schemas, all major types are
defined as named top-level complexTypes with a name ending in "-type". The element is then
defined with the same name without the "-type". This makes it easy to reuse individual
components in other models, following the "salami slice" schema design paradigm. For example:

/* Experimental protocol. */
complexType cortical_protocol-type extends bml:protocol-type {

(preparation,
description,
stimulus_nudge?,
bml:link_experiment?)

}

Submitting BrainML Models

Page 3
Copyright 2004, Cornell University. All rights reserved.

http://cortex.med.cornell.edu/

http://cortex.med.cornell.edu/
http://cortex.med.cornell.edu/

This defines a type for describing an experimental protocol. The first line is a comment, and is
mandatory by BrainML convention, for it provides the main documentation for the type. The
second line names the type, and declares it to inherit from protocol-type in the BrainML
base model. The next set of lines declare the contents of this type: each term refers to another
local definition in this model (cortical neurophysiology), except for the last, which refers to a
definition in the BrainML base model. The commas indicate sequential ordering of the contents,
and the question marks indicate optional occurrence.

Two of the local definitions are shown here:

/* Preparation type used in this Protocol. */
element preparation restricts bmtl:vocab-type {

attribute domain {xs:token} = "protocol.preparation"
}

/* Short verbal description of Protocol. */
element description { xs:string }

The first definition here represents a controlled vocabulary field, marked by "restricts
bmtl:vocab-type". The 'domain' attribute is given a fixed value, declaring the domain a
valid term for this field should come from (see specification).

Finally, the cortical_protocol element itself is declared:

/* Experimental protocol. */
element cortical_protocol substitutes bml:protocol

{ cortical_protocol-type }

The "substitutes ..." here declares that this element may be used in places where a
protocol element is called for in models. This is analogous to the ability in object-oriented
programming languages to use a subclass where a superclass is called for. Unlike in OO
languages, however, this capability must be declared separately in XML schema from the
declaration of inheritance.

7. Leverage Existing Model Structures

The BrainMetaL and BrainML base packages offer many components that a model-builder can
leverage to create a customized data model. These components include general-purpose
structures for:

• containing data in specific structures such as unbinned histograms, X-Y datasets, etc;
• metadata to sufficiently describe the data;
• indicating the author(s) of data;
• linking the data to other sets of data;

Submitting BrainML Models

Page 4
Copyright 2004, Cornell University. All rights reserved.

http://cortex.med.cornell.edu/

http://cortex.med.cornell.edu/
http://cortex.med.cornell.edu/

In each instance, you have the option of using the base components directly, creating new
definitions inheriting from them, or coming up with completely new, independent definitions.
(These cases are all illustrated in the example above.)

BrainMetaL includes a set of five top-level classes we refer to as the Quintessence elements.
These are highly generic entities that all major components in the BrainMetaL and BrainML base
packages descend from by inheritance. We recommend that all models follow this convention.
The Quintessence is used by software to determine basic structure in a data document, and it also
provides a helpful initial level of organization for model semantics.

Below is an example of defining an entity directly descendant from a Quintessence element. (In
most cases you will not define something directly descending from the Quintessence, but the
idea is the same.) Here, data_element-type is the Quintessence class, and view-type is
the descending entity.

/* Base content for a View */
complexType view-type extends bmtl:data_element-type {

(link_recording_site*, label)
/* Ordering position of this View within its containing experiment. */
required attribute seq { xs:int }

}

8. Validate the New Model

You can check the new model for validity as an XML schema and compatibility with any
existing BrainML components it references by clicking the Validate link on the left side
navigation bar. Instructions are given on that page.

9. Publish the Model

Using this model server, publishing the model is easy. From the View Models page (also
available through the "Model Schemas" link at top left), select "Submit new model...". (You
must be logged in to perform this action.) Then follow the screen there to create a Model. This
just creates a placeholder. You then submit the schema itself as a version of the model (the first
version, to be exact).

Before a model is published, it must currently be reviewed by the BrainML.org staff. This
process should take place within 2-3 days, at which point you will be notified of acceptance. At
this time the model and its first version will become visible on the site. Submitting subsequent
versions does not require this review step.

Submitting BrainML Models

Page 5
Copyright 2004, Cornell University. All rights reserved.

http://cortex.med.cornell.edu/

validation.do
viewModels.do
http://cortex.med.cornell.edu/
http://cortex.med.cornell.edu/

	1 Introduction
	2 Sign up for an Account
	3 Copy an Existing Model
	4 Declare Model Namespace
	5 Import Referenced Models
	6 Define Components
	7 Leverage Existing Model Structures
	8 Validate the New Model
	9 Publish the Model

